
Deep Unfolding of a Proximal Interior Point
Method for Image Restoration†

C. Bertocchi1, E. Chouzenoux2, M.-C. Corbineau2, J.-C.
Pesquet2, and M. Prato1

1 Università di Modena e Reggio Emilia, Modena, Italy
2 CVN, CentraleSupélec, INRIA Saclay, Université Paris-Saclay, Gif-Sur-Yvette,
France

E-mail: carla.bertocchi@unimore.it,

emilie.chouzenoux@centralesupelec.fr,

marie-caroline.corbineau@centralesupelec.fr,

jean-christophe.pesquet@centralesupelec.fr, marco.prato@unimore.it

Abstract. Variational methods are widely applied to ill-posed inverse problems
for they have the ability to embed prior knowledge about the solution. However,
the level of performance of these methods significantly depends on a set of
parameters, which can be estimated through computationally expensive and time-
consuming methods. In contrast, deep learning offers very generic and efficient
architectures, at the expense of explainability, since it is often used as a black-box,
without any fine control over its output. Deep unfolding provides a convenient
approach to combine variational-based and deep learning approaches. Starting
from a variational formulation for image restoration, we develop iRestNet, a
neural network architecture obtained by unfolding a proximal interior point
algorithm. Hard constraints, encoding desirable properties for the restored image,
are incorporated into the network thanks to a logarithmic barrier, while the
barrier parameter, the stepsize, and the penalization weight are learned by the
network. We derive explicit expressions for the gradient of the proximity operator
for various choices of constraints, which allows training iRestNet with gradient
descent and backpropagation. In addition, we provide theoretical results regarding
the stability of the network for a common inverse problem example. Numerical
experiments on image deblurring problems show that the proposed approach
compares favorably with both state-of-the-art variational and machine learning
methods in terms of image quality.

Keywords: Interior point method, proximal algorithms, deep unfolding, neural
network, image restoration, regularization.

† Contact author: M.-C. Corbineau, marie-caroline.corbineau@centralesupelec.fr.

ar
X

iv
:1

81
2.

04
27

6v
4

 [
m

at
h.

O
C

]
 2

2
Ju

l 2
01

9

2

1. Introduction

In this work we focus on inverse problems related to the following model:

y = D(Hx), (1)

where y ∈ Rm is the observed data, x ∈ Rn is the sought signal or image, H ∈ Rm×n
is the observation operator, which is assumed linear, and D is the noise perturbation
operator. The linear operator H is assumed to be known from a physical model or
prior identification step [1, 2]. In this context, both variational and deep learning
approaches provide efficient methods for delivering an estimate of x, while offering
different benefits and drawbacks, which are discussed hereafter.

In order to find an appropriate solution to an ill-posed inverse problem like (1), vari-
ational methods incorporate prior information on the sought variable x, through con-
straints or regularization functions, such as the total variation and its various exten-
sions [3] or sparsity-promoting functions [4]. This leads to the following minimization
problem,

min
x∈C

f(Hx, y) + λR(x) (2)

where f : Rm×Rm → R is a data-fidelity function, which is convex with regards to its
first variable and which is related to the degradation model, R : Rn → R is a convex
regularization function, λ ∈]0,+∞[is a regularization parameter and C is a subset
of Rn. Although useful, this approach is sometimes limited by its complexity: solving
(2) may require advanced algorithms that may be too slow for real-time applications.
In addition, λ is a parameter that needs to be set and R is usually parametrized by
one or several parameters, whose optimal choice may strongly depend on the data at
hand. These parameters are often tuned manually or computed using, for instance,
cross validation, the discrepancy principle [5], or methods based on Stein unbiased risk
estimates (SURE) [6]. However, these methods are often time-consuming and their
success is not always guaranteed. Furthermore, despite numerous efforts in designing
sophisticated models, solving (2) does not necessarily lead to the best estimate for
x, hence the development of early stopping methods, where the iterative procedure
is stopped before convergence [7]. Finding the optimal stopping time depends on the
algorithm and requires the use of an oracle such as SURE, which may explain why
these techniques are currently restricted to relatively simple cost functions.

Deep Neural Networks (DNNs), and in particular Convolutional Neural Networks
(CNNs), provide good performance for various applications related to inverse prob-
lems, such as denoising [8], non-blind and blind deblurring [9, 10, 11], super-resolution
[12], or CT reconstruction [13]. As detailed in [14], DNNs for inverse problems are
very often preceded by a pre-processing step. Indeed, a rough estimation of x can
be found by using the inverse or pseudoinverse of H. The latter tends, however,
to strongly amplify noise. Hence, in this context, DNNs are used as denoisers and
artifact-removers. However, since prior knowledge about its output can hardly be
incorporated into a DNN, which in most of the cases is viewed as a black-box, the
explainability and reliability [15] of such methods could be questioned. Furthermore,
the pre-processing step, in itself, can include a penalty, thus amounting to solving
a problem of the form (2), where the regularization weight strongly depends on the
noise level, e.g. [10, 16]. One straightforward way to combine the benefits of both

3

variational-based methods and DNNs is to unfold an iterative method and untie the
parameters of both the model and the algorithm across the layers of the network [17].
Interestingly, the fact that this approach makes use of a limited number of layers can
be viewed as an analogue of early stopping methods. It is however worth mentioning
that, in unfolded algorithms, the number of iterations (i.e., layers) is tuned during
the off-line training step and is then fixed for all test images, which differs from early
stopping strategies where the iteration number usually differs for each processed image.

In this paper, we propose a novel neural network architecture called iRestNet, which
is obtained by unfolding a proximal interior point algorithm over a finite number of
iterations. One key feature of this algorithm is that it produces only feasible iterates
thanks to a logarithmic barrier. This barrier enables prior knowledge to be directly
incorporated into iRestNet and, as opposed to a projection onto C, it allows differenti-
ation and gradient backpropagation throughout the network. Hence, gradient descent
can be used for training. The stepsize, barrier parameter, and regularization weight
are untied across the network and learned for each layer. Thus, once the network has
been trained, its application on test images requires only a short execution time per
image without any parameter search, as opposed to traditional variational methods.

Related works apply deep unfolding to probabilistic models, such as Markov ran-
dom fields [17], topic models [18], and to different algorithms like primal-dual solvers
[19] or the proximal gradient method [20, 21]. Classic optimization algorithms can be
unfolded to perform many different tasks in image processing. For instance, FISTA
and ISTA can be unfolded to perform sparse coding [22, 23], while the same ISTA
and ADMM can be unrolled for image compressive sensing [24, 25]. However, in the
aforementioned works, some functions and operators are learned, which weakens the
link between the resulting network and the original algorithm. Deep unfolding is
also used to learn shrinkage functions, which can be viewed as proximity operators
of sparsity-promoting functions [26, 27], or to optimize hyperparameters in nonlinear
reaction diffusion models [28]. Several recent works consider replacing handcrafted
algorithms by learned iterative methods [29, 30]. In these approaches, the goal is to
find the minimizer of a given objective function, whereas in the proposed method, the
architecture is inspired by an optimization strategy applied to the minimization of an
objective function. Hence, a better indicator of perceptual quality can be optimized
during the training step. Only a few works so far have considered combining interior
point methods (IPMs) with deep learning. Every layer of the network from [31] solves
a small quadratic problem using an IPM, while in [32], hard constraints are enforced
on weights by using the logarithmic barrier function during training. More recently,
an interior point strategy was used to design a recurrent network, whose purpose is
to solve a specific convex constrained problem [33]. In our case, the proposed net-
work is not trained to output a minimizer of the constrained problem from which
its architecture is inspired. Instead, a direct evaluation of the reconstruction error is
used during training. In addition, iRestNet appears to have more flexibility since the
regularization weight can vary among layers.

To the best of our knowledge, this paper presents the first architecture corresponding
to a deep unfolded version of an interior point algorithm with untied stepsize and
regularization parameter. As opposed to other unfolding methods like [20, 21], the
proximity operator and the regularization term are kept explicit, which establishes a

4

direct relation between the original algorithm and the network. Other contributions
of this work include the expression of the required proximity operator, and of its cor-
responding gradient, for three standard variational formulations, along with numerical
experiments demonstrating the benefit of using the proposed approach over other ma-
chine learning and variational methods for image deblurring.

This paper is organized as follows: in Section 2, we describe the proximal interior
point optimization method which is at the core of our approach, and we provide the
proximity operator of the barrier for three useful cases in Section 3. In Section 4, we
present the proposed neural network architecture and its associated backpropagation
method. In Section 5, we conduct a stability analysis of the proposed network when
the data fidelity term and the regularization function are quadratic. Section 6 is dedi-
cated to numerical experiments and comparison to state-of-the-art methods for image
deblurring; finally, some conclusions are drawn in Section 7.

2. Proximal interior point algorithm

2.1. Variational formulation and notation

As detailed in Section 1, the sought image x can be classically approximated by
the minimizer of a penalized cost function expressed as the sum of a data-fitting
term, which measures the fidelity of the solution to the observation model (1), and
a regularization term, which is introduced so as to avoid meaningless solutions and
improve stability to noise. This leads to problem (2) with λ ∈]0,+∞[a regularization
parameter. For every q ∈ N, let Γ0(Rq) denote the set of functions which take values in
R∪{+∞} and are proper, convex, lower semicontinuous on Rq. In the remaining of the
paper, we will assume that, for every y ∈ Rm, f(·, y) ∈ Γ0(Rm) is a twice-differentiable
data-fidelity term, and R ∈ Γ0(Rn) is a twice-differentiable regularization function.
Note that such assumption is necessary to define the derivative steps involved in the
backpropagation procedure for the training of our network. The feasible set C is
defined by p inequality constraints which enforce the fulfillment of some properties
that are expected to be satisfied a priori by the image:

C = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) ≥ 0}, (3)

where, for every i ∈ {1, . . . , p}, −ci ∈ Γ0(Rn). The strict interior of the feasible
domain, intC, is equal to

intC = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) > 0}, (4)

and it is assumed to be nonempty. Inequality constraints are frequently used in image
processing. For instance, they can be derived from the underlying geometry of the
problem, like in [34], in the context of Poisson-noise denoising. We can also mention
the work in [35], where inequality constraints are used in a problem of deformable
image matching to ensure that the estimated image deformation is injective and pre-
serves the topology. Constraints can also serve to enforce some a priori knowledge
about the solution, as in the image segmentation approach in [36], where bound con-
straints are imposed on the segmented areas and their barycenters. Finally, we will
assume that either f(H·, y) + λR is coercive, or C is bounded. Then the existence of
solutions for (2) is guaranteed. It is worthy to emphasize that a large class of penal-
ized formulations encountered in the literature of image restoration fulfills the above

5

requirements, see e.g. [37] and references therein.

Let us introduce additional notations, which will be useful in the rest of the paper.
First, for every g ∈ Γ0(Rn), γ ∈]0,+∞[, and x ∈ Rn, the proximity operator [38] of
γg at x is uniquely defined as

proxγg(x) = argmin
u∈Rn

1

2
‖x− u‖2 + γg(u). (5)

Finally, for all (x, y, λ) ∈ Rn × Rm×]0,+∞[, we define

h(x, y, λ) = f(Hx, y) + λR(x), (6)

and
∇1h(x, y, λ) = H>∇1f(Hx, y) + λ∇R(x), (7)

where ∇1f is the partial gradient of f with respect to its first variable.

2.2. Interior point approaches

In general, problem (2) does not have a closed-form solution on account of the in-
equality constraints, even for simple regularizations, hence an iterative solver must be
used. Several resolution approaches are available, either based on projected gradient
strategies [39, 40], ADMM [41], primal-dual schemes [42], or interior point techniques
[43]. Standard interior point methods require to invert several n × n linear systems,
which leads to a high computational complexity for large scale problems. Nonetheless,
it has recently been shown that combining the interior point framework with a prox-
imal forward–backward strategy [44, 45] leads to very competitive solvers for inverse
problems [46, 47, 48].

The idea behind IPMs is to replace the initial constrained optimization problem by a
sequence of unconstrained subproblems of the form:

min
x∈Rn

f(Hx, y) + λR(x) + µB(x) (8)

where B : Rn → R ∪ {+∞} is the logarithmic barrier function with unbounded
derivative at the boundary of the feasible domain:

(∀x ∈ Rn) B(x) =

 −
p∑
i=1

ln(ci(x)) if x ∈ intC

+∞ otherwise,

(9)

and µ ∈]0,+∞[is the so–called barrier parameter which vanishes along the
minimization process. We assumed that either f(H·, y) + λR is coercive, or C is
bounded, hence, the set of solutions to (2) is bounded. Since intC is not empty we can
apply [49, Theorem 5(ii)] and the existence of solutions to (8) is guaranteed.

2.3. Proposed iterative schemes

Thanks to the proximity operator, the IPM from [50] does not require any matrix
inversion. When the proximity operator is computed in an exact manner, the proposed

6

IPM can be rewritten as Algorithm 1, whose convergence has been proven under some
assumptions [50, Theorem 4.1].

Algorithm 1 Exact version of the proximal IPM in [50] applied to problem (2).

Let x0 ∈ intC, γ > 0 and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
for k = 0, 1, . . . do
xk+1 = proxγk(h(·,y,λ)+µkB) (xk)

end for

Algorithm 1 requires evaluating the proximity operator of the sum of the barrier and
the regularized cost function, which can be an issue since, in most of the cases, this
operator does not have a closed-form solution. This is the reason why we propose to
modify it by introducing a forward step, which leads to Algorithm 2.

Algorithm 2 Proposed forward–backward proximal IPM.

Let x0 ∈ intC, γ > 0 and (γk)k∈N be a sequence such that (∀k ∈ N) γ ≤ γk;
for k = 0, 1, . . . do
xk+1 = proxγkµkB (xk − γk∇1h (xk, y, λ))

end for

To the best of our knowledge, there is no available convergence study for Algorithm 2
among the literature of interior-point methods. There exist links between the above
algorithm and the diagonal or penalization method introduced in [51]. Indeed, taking
A ≡ 0 and Ψ1 ≡ 0 in [51] leads to Algorithm 2, whose convergence is proven.
However, there are some key differences between both approaches, namely i) in [51],
the barrier parameter tends to infinity while it goes to zero in our case, and ii) the
algorithm in [51] solves a hierarchical minimization problem instead of the constrained
optimization problem (2). It is worth noting that Algorithm 2 only requires computing
the proximity operator of the logarithmic barrier. We will provide its expression in
Section 3 for three different types of constraints.

2.4. Limitations

In IPMs, the barrier parameter and stepsize sequences, (µk)k∈N and (γk)k∈N, are usu-
ally set by following some heuristic rules, which ensure the convergence of the method
to a minimizer of the considered objective function. However, handcrafted variational
formulations do not necessarily capture well image quality. These heuristics can thus
lead to a loss in terms of efficiency and versatility of the resulting restoration schemes.
Moreover, as already mentioned, an accurate setting of the regularization weights is

particularly critical in order to obtain a satisfactory image quality when using such
penalized restoration approaches. Existing approaches for selecting λ, which are based
on statistical considerations, are usually associated with a substantial increase of the
computational cost.

7

To overcome these limitations, we propose to unfold Algorithm 2 over a given number
of iterations and to learn the stepsize, the barrier and the regularization parameters for
every iteration in a supervised fashion. Our machine learning method will make use of
gradient backpropagation for its training step. The latter requires the derivatives of
the proximity operator in Algorithm 2 with respect to its input and to the aforemen-
tioned parameters which are to be learned. Therefore, we first conduct an analysis
of the proximity operator of the barrier and of its derivatives, for three examples of
interest in Section 3.

3. Proximity operator of the barrier

Let B be defined as in (9) and for all µ > 0, γ > 0 and x ∈ Rn, let ϕ be defined as
follows:

ϕ(x, µ, γ) = proxγµB(x). (10)

We provide in this section expressions of ϕ and of its derivatives with respect to its
input variable x and the involved barrier and stepsize parameters (µ, γ), for three
common types of constraints. The latter will be necessary for training the proposed
neural network using a gradient backpropagation scheme.

3.1. Affine constraints

Let us first consider the following half-space constraint:

C = {x ∈ Rn | a>x ≤ b}, (11)

with a ∈ Rn \ {0} and b ∈ R.

Proposition 1 Let γ > 0, µ > 0, and let B be the function associated to (11), defined
as

(∀u ∈ Rn) B(u) =

{
− ln(b− a>u) if a>u < b,

+∞ otherwise.
(12)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
b− a>x−

√
(b− a>x)2 + 4γµ‖a‖2

2‖a‖2
a. (13)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = In −

1

2‖a‖2

(
1 +

a>x− b√
(b− a>x)2 + 4γµ‖a‖2

)
aa>, (14)

∇(µ)
ϕ (x, µ, γ) =

−γ√
(b− a>x)2 + 4γµ‖a‖2

a, (15)

and

∇(γ)
ϕ (x, µ, γ) =

−µ√
(b− a>x)2 + 4γµ‖a‖2

a, (16)

where In ∈ Rn×n denotes the identity matrix.

8

Proof. The expression for the proximity operator (13) directly follows from [38,
Example 24.40], [38, Proposition 24.8 (v)] and [38, Corollary 24.15]. Taking the deriva-
tive of (13) with respect to x, µ and γ leads to (14)–(16). �

3.2. Hyperslab constraints

We now consider the following hyperslab set:

C = {x ∈ Rn | bm ≤ a>x ≤ bM}, (17)

where a ∈ Rn \ {0}, bm ∈ R and bM ∈ R with bm < bM.

Proposition 2 Let γ > 0, µ > 0, and let B be the barrier function associated to (17),
defined as

(∀u ∈ Rn) B(u) =

{
− ln(bM − a>u)− ln(a>u− bm) if bm < a>u < bM,

+∞ otherwise.
(18)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = x+
κ(x, µ, γ)− a>x

‖a‖2
a, (19)

where κ(x, µ, γ) is the unique solution in]bm, bM[, of the following cubic equation:

0 = z3 − (bm + bM + a>x)z2 + (bmbM + a>x(bm + bM)− 2γµ‖a‖2)z

− bmbMa>x+ γµ(bm + bM)‖a‖2.
(20)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) = In +

1

‖a‖2

(
(bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

η(x, µ, γ)
− 1

)
aa>, (21)

∇(µ)
ϕ (x, µ, γ) =

−γ(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
a, (22)

and

∇(γ)
ϕ (x, µ, γ) =

−µ(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
a, (23)

where

η(x, µ, γ) = (bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

− (bm + bM − 2κ(x, µ, γ))(κ(x, µ, γ)− a>x)− 2γµ‖a‖2.
(24)

Proof. Let x ∈ Rn, γ > 0, and µ > 0. The expression for the proximity operator
(19) follows from [52, Example 4.15] and [38, Corollary 24.15]. Let F be defined as
follows:

F (x, µ, γ, z) = (bM − z)(bm − z)(z − a>x) + γµ(bM + bm − 2z)‖a‖2, (25)

9

for z ∈]bm, bM[. Expanding (25) gives the following:

F (x, µ, γ, z) = z3 − (a>x+ bm + bM)z2 + (bmbM + a>x(bm + bM)− 2γµ‖a‖2)z

− bmbMa>x+ γµ(bm + bM)‖a‖2.
(26)

Hence, by definition of κ(x, µ, γ), we have F (x, µ, γ, κ(x, µ, γ)) = 0. In addition, the
derivative of F with respect to its last variable is equal to

∇F (z)(x, µ, γ, z) = (bM − z)(bm − z)− (bm + bM − 2z)(z − a>x)− 2γµ‖a‖2. (27)

By construction, (bM−κ(x, µ, γ))(bm−κ(x, µ, γ)) < 0. Moreover, −2γµ‖a‖2 < 0 and,
since F (x, µ, γ, κ(x, µ, γ)) = 0, it follows that (bm+bM−2κ(x, µ, γ)) and κ(x, µ, γ)−a>x
share the same sign. Hence,

η(x, µ, γ) = ∇F (z)(x, µ, γ, κ(x, µ, γ)) 6= 0. (28)

From the implicit function theorem [53, Theorem 1B.1], we deduce that the gradient
of κ with respect to x and the partial derivatives of κ with respect to µ and γ exist
and are equal to

∇κ(x)(x, µ, γ) =
(bM − κ(x, µ, γ))(bm − κ(x, µ, γ))

η(x, µ, γ)
a, (29)

∇κ(µ)(x, µ, γ) =
−γ‖a‖2(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
, (30)

and

∇κ(γ)(x, µ, γ) =
−µ‖a‖2(bm + bM − 2κ(x, µ, γ))

η(x, µ, γ)
. (31)

Differentiating (19) with respect to x, µ and γ and using (29)–(31) yields (21)–(23). �

Note that the three roots of (20) can easily be computed using the Cardano formula.
The graph of the resulting proximity operator is plotted on Figure 1 (left) for n = 1,
a = 1, bm = 0, bM = 1, and various values for γµ.

3.3. Bounded `2-norm

We now consider the case when the feasible set in (2) is an Euclidean ball

C = {x ∈ Rn | ‖x− c‖2 ≤ α}, (32)

with α > 0 and c ∈ Rn.

Proposition 3 Let γ > 0 and let µ > 0. Let B be the barrier function associated to
(32), defined as

(∀u ∈ Rn) B(u) =

{
− ln(α− ‖u− c‖2) if ‖u− c‖2 < α,

+∞ otherwise.
(33)

Then, for every x ∈ Rn, the proximity operator of γµB at x is given by

ϕ(x, µ, γ) = c+
α− κ(x, µ, γ)2

α− κ(x, µ, γ)2 + 2γµ
(x− c), (34)

10

Figure 1. Proximity operator of the logarithmic barrier: proxγµB(x) for
hyperslab constraint as in Section 3.2 with bm = 0 and bM = 1 (left),(
proxγµB(x)

)
1

for a constraint on the `2-norm as in Section 3.3 with α = 0.7

(right).

where κ(x, µ, γ) is the unique solution in [0,
√
α[of the cubic equation:

0 = z3 − ‖x− c‖z2 − (α+ 2γµ)z + α‖x− c‖. (35)

In addition, the Jacobian matrix of ϕ with respect to x and the gradients of ϕ with
respect to µ and γ are given by

J (x)
ϕ (x, µ, γ) =

α− ‖ϕ(x, µ, γ)− c‖2

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ), (36)

∇(µ)
ϕ (x, µ, γ) =

−2γ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c), (37)

and

∇(γ)
ϕ (x, µ, γ) =

−2µ

α− ‖ϕ(x, µ, γ)− c‖2 + 2γµ
M(x, µ, γ)(ϕ(x, µ, γ)− c), (38)

where

M(x, µ, γ) = In −
2(x− ϕ(x, µ, γ))(ϕ(x, µ, γ)− c)>

α− 3‖ϕ(x, µ, γ)− c‖2 + 2γµ+ 2(ϕ(x, µ, γ)− c)>(x− c)
. (39)

Proof. Let x ∈ Rn, γ > 0, µ > 0. Let us first consider the case when c = 0. We
denote with ϕ0 the following proximity operator:

ϕ0(x, µ, γ) = argmin
u∈intC

1

2
‖x− u‖2 − γµ ln(α− ‖u‖2). (40)

Hence, ‖ϕ0(x, µ, γ)‖2 < α and ϕ0(x, µ, γ) is a solution to the following equation:

0 = ϕ0(x, µ, γ)− x+
2γµ

α− ‖ϕ0(x, µ, γ)‖2
ϕ0(x, µ, γ). (41)

11

Since α− ‖ϕ0(x, µ, γ)‖2 + 2γµ > 0, (41) becomes

ϕ0(x, µ, γ) =
α− ‖ϕ0(x, µ, γ)‖2

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
x. (42)

By taking the norm in both sides of (42), we deduce that ‖ϕ0(x, µ, γ)‖ = κ(x, µ, γ)
is a solution to the cubic equation (35). Since the proximity operator at a given x is
uniquely defined, there exists only one real solution to (35) which belongs to [0,

√
α[.

Plugging the latter into (42) leads to (34). The analysis when c 6= 0 is deduced from
the case c = 0 by using [38, Proposition 24.8 (v)]: the proximity operator of γµB at
x is given by

ϕ(x, µ, γ) = c+ ϕ0(x− c, µ, γ). (43)

Let us study the derivatives of ϕ0. For every v ∈ Rn, let F be defined as

F (x, µ, γ, v) = (α− ‖v‖2)(v − x) + 2γµv. (44)

The Jacobian of F with respect to its last variable is equal to

J
(v)
F (x, µ, γ, v) = (α− ‖v‖2 + 2γµ)In + 2(x− v)v>. (45)

Since α − ‖ϕ0(x, µ, γ)‖2 > 0, according to the Sherman–Morrison Lemma [54],

J
(v)
F (x, µ, γ, ϕ0(x, µ, γ)) is invertible if and only if

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>(x− ϕ0(x, µ, γ)) 6= 0. (46)

Furthermore, it follows from (41) that

F (x, µ, γ, ϕ0(x, µ, γ)) = 0. (47)

Applying ϕ0(x, µ, γ)> on (47) leads to ϕ0(x, µ, γ)>(x− ϕ0(x, µ, γ)) ≥ 0. In addition,

α − ‖ϕ0(x, µ, γ)‖2 + 2γµ > 0. Hence, J
(v)
F (x, µ, γ, ϕ0(x, µ, γ)) is invertible and its

inverse is given by the Sherman–Morrison formula:

J
(v)
F (x, µ, γ, ϕ0(x, µ, γ))−1 =

1

α− ‖ϕ0(x, µ, γ)‖2 + 2γµ
×[

In −
2(x− ϕ0(x, µ, γ))ϕ0(x, µ, γ)>

α− 3‖ϕ0(x, µ, γ)‖2 + 2γµ+ 2ϕ0(x, µ, γ)>x

]
.

(48)

From the implicit function theorem [53, Theorem 1B.1] we deduce that the Jacobian
of ϕ0 with respect to x and the gradients of ϕ0 with respect to µ and γ exist and are
equal to

J (x)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1J

(x)
F (x, µ, γ, ϕ0(x, µ, γ)), (49)

∇(µ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(µ)

F (x, µ, γ, ϕ0(x, µ, γ)), (50)

and

∇(γ)
ϕ0

(x, µ, γ) = −J (v)
F (x, µ, γ, ϕ0(x, µ, γ))−1∇(γ)

F (x, µ, γ, ϕ0(x, µ, γ)). (51)

12

When c 6= 0, the derivatives of ϕ are deduced from those of ϕ0 using (43):

J (x)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1J (x)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (52)

∇(µ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1∇(µ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (53)

and

∇(γ)
ϕ (x, µ, γ) = −J (v)

F (x− c, µ, γ, ϕ(x, µ, γ)− c)−1∇(γ)
F (x− c, µ, γ, ϕ(x, µ, γ)− c), (54)

which lead to (36)-(38). �

Similarly to the previous case, the three solutions to (35) can be obtained by using the
Cardano formula. The form of the resulting proximity operator for n = 2 is plotted
on Figure 1 (right) for α = 0.7, c = 0, and several values of γµ and x; for symmetry
reasons, only the first component

(
proxγµB(x)

)
1

is represented.

As shown in this section, the proximity operator of the barrier is easily computable
and differentiable for several classic types of constraints. Next, we detail the proposed
approach in Section 4.

4. iRestNet architecture

4.1. Overview

Our proposal is to adopt a supervised learning strategy in order to determine, from
a training set of images, an optimal setting for the parameters of Algorithm 2, which
should lead to an optimal image restoration quality. To this aim, Algorithm 2 is
unfolded over K iterations and the regularization parameter λ is untied across the
network, so as to provide more flexibility to the approach [17]. The update rule at a
given iteration k ∈ {0, . . . ,K − 1} reads

xk+1 = A (xk, µk, γk, λk) (55)

with
A (xk, µk, γk, λk) = proxγkµkB (xk − γk∇1h (xk, y, λk)) . (56)

For every k ∈ {0, . . . ,K − 1}, we build the k-th layer Lk as the association of three

hidden structures, L(µ)
k , L(γ)

k and L(λ)
k , followed by the update A. Structures L(µ)

k ,

L(γ)
k , and L(λ)

k aim at inferring the barrier parameter µk, the stepsize γk and the
regularization weight λk, respectively. Since a finite number K of layers (i.e., updates)
is used, the convergence of the resulting scheme is not an issue. Note that we also
allow in our framework the use of a post–processing step after going through the K
layers, that will be denoted as Lpp. The resulting architecture is depicted in Figure 2.

4.2. Hidden structures

Let us now provide more details about the hidden structures. For every k ∈
{0, . . . ,K − 1}, the outputs (µk, γk, λk) of the structures L(µ)

k , L(γ)
k , and L(λ)

k must be

13

Input	
RGB	image

= ��0

(�)

0

(�)

0

(�)

0

�0

�0

�0

0

��

��

Output	
RGB	image

�1
(�)

1

(�)

1

(�)

1

�1

�1

�1

1

�2

Figure 2. iRestNet global architecture.

positive. To enforce such constraint, we use the Softplus function [55], defined below,
which can be viewed as a smooth approximation of the ReLU activation function:

(∀z ∈ R) Softplus(z) = ln(1 + exp(z)). (57)

Unlike the ReLU, the gradient of Softplus is never strictly equal to zero, which, given
our architecture, helps to propagate the gradient through the network. The stepsize
is estimated as follows,

γk = L(γ)
k = Softplus (ak) , (58)

where ak is a scalar parameter of the network learned during training. The barrier
parameter is obtained using two convolutional and average pooling layers followed by

a fully connected layer. The detailed architecture of L(µ)
k is depicted in Figure 3.

Traditional methods for estimating the regularization parameter generally depend on
the signal-to-noise ratio and on the image statistics [56]. For most applications the
noise level is unknown and can be estimated, for instance, by applying a median filter
over the wavelet diagonal coefficients of the image [57]. This strategy is used in the
numerical experiments presented in Section 6. The advantage is to yield a network
which can handle datasets for which the signal-to-noise ratio is unknown and can vary

within a reasonable range. The expression of L(λ)
k is then problem–dependent since it

is built upon the regularization strategy. A specific example is given in Section 6 for
the total variation regularization function.
Regarding the post-processing step Lpp, its detailed architecture also depends on the
task to be performed. An example is provided in Section 6 for the case of deblurring:
the purpose of Lpp is then to remove remaining artifacts using convolutional layers,
residual learning, batch normalization, and dilation.

4.3. Differential calculus

To train the neural network presented in Figure 2 using gradient descent, one needs to
compute the gradient of xK with respect to the different parameters of the network.
The chain rule can be applied since most of the steps in the network correspond
to operators having straightforward derivatives. However, particular care should be
taken when differentiating A. Since f and R are assumed to be twice differentiable,
the only area of concern is related to proxγµB. If proxγµB is simple enough, automatic
differentiation [58] can be used. Otherwise, as shown in Section 3, for common
examples of barrier functions, the differential of this term is well-defined. The
corresponding expressions for the derivatives are provided in Propositions 1–3.

14

AvgPool	4x4	
+	SoftPlus

AvgPool	4x4	
+	SoftPlus

SoftPlus

Fully	connected	layer

25
6 256

3

64 64

16 16

16x16 16x16

1
��

��

5
5

5

5

Figure 3. Architecture of L(µ)k .

5. Network stability

One critical issue concerning neural networks is to guarantee that their performance
remains acceptable when the input is perturbed. For example, the authors of [15] show
that the class prediction made by AlexNet can be arbitrarily changed by using small
nonrandom perturbations on the test image. A recent work [59] provides a theoretical
framework which enables to evaluate the robustness of a network. In this section,
we will focus on a subclass of problem (2) where both f(·, y) and R are quadratic
functions. After highlighting the similarities between the proposed architecture and
generic feedforward networks in that case, we will give explicit conditions under which
the robustness of the proposed architecture is ensured.

5.1. Relation to generic deep neural networks

Although the proposed architecture may seem specific to Algorithm 2, it is actually
very similar to generic feedforward neural networks. Classical feedforward (acyclic)
architectures [60] can be expressed as RK−1◦(WK−1·+bK−1)◦· · ·◦R0◦(W0·+b0), where
(Rk)0≤k≤K−1 are nonlinear activation functions, (Wk)0≤k≤K−1 are weight operators
and (bk)0≤k≤K−1 are bias parameters. Let us show that iRestNet actually shares a
similar structure. For the sake of simplicity, we will consider the variational problem,

minimize
x∈C

1

2
‖Hx− y‖2 +

λ

2
‖Dx‖2, (59)

where y ∈ Rn, H ∈ Rn×n, D ∈ Rn×n, and C is defined as in (3). Moreover, we
assume that no post–processing layer Lpp is used. Following the notation of Section 4,
(∀k ∈ {0, . . . ,K−1}) (µk, γk, λk) are given positive real numbers, K being the number
of layers of the network. Then, for every k ∈ {0, . . . ,K − 1}, layer Lk corresponds to
the following update,

xk+1 = proxγkµkB
(
xk − γk

(
H> (Hxk − y) + λkD

>Dxx
))

= proxγkµkB
([
In − γk

(
H>H + λkD

>D
)]
xk + γkH

>y
)
, (60)

where B is defined as in (9). For every k ∈ {0, . . . ,K − 1}, we set

Wk = In − γk
(
H>H + λkD

>D
)
, bk = γkH

>y, and Rk = proxγkµkB. (61)

15

Then, the K-layer network LK−1 ◦ · · · ◦ L0 is equivalent to RK−1 ◦ (WK−1 ·+bK−1) ◦
· · · ◦R0 ◦ (W0 ·+b0), where (Wk)0≤k≤K−1 and (bk)0≤k≤K−1 are interpreted as weight
operators and bias parameters, respectively. The operators (Rk)0≤k≤K−1 defined
in (61) can be viewed as specific activation functions since, as shown in [59], every
standard activation function can be derived from a proximity operator. In addition,
using [38, Proposition 24.8(iii)], for every k ∈ {0, . . . ,K − 1}, Rk can be re-written as
the sum of a proximal activation operator [59, Definition 2.20] and a bias.

5.2. Preliminary results

Before stating our main stability theorem, we recall the result from [59, Lemma 3.3]
in Proposition 4 below. We then derive Proposition 5, which will appear useful when
addressing the robustness of the global network. In the following, Sn denotes the set
of symmetric matrices in Rn×n and, for every W ∈ Rn×n, ‖W‖ denotes its spectral
norm.

Proposition 4 [59] Let K ≥ 1 be an integer and set θ−1 = 1. For every k ∈
{0, . . . ,K − 1}, let Wk ∈ Rn×n and let θk be defined by

θk = ‖Wk ◦ · · · ◦W0‖+

k−1∑
`=0

∑
0≤j0<···<j`≤k−1

‖Wk ◦ · · · ◦Wj`+1‖×

‖Wj` ◦ · · · ◦Wj`−1+1‖ · · · ‖Wj0 ◦ · · · ◦W0‖.

(62)

Then, for every k ∈ {0, . . . ,K − 1}, θk =
∑k
`=0 θ`−1 ‖Wk ◦ . . . ◦Wl‖.

Proposition 5 Let K ≥ 1, θ > 0, and α ∈ [1/2, 1]. Let W ∈ Sn and let β− and β+
denote the smallest and largest eigenvalues of W , respectively. Then, the condition

‖W − 2K(1− α)In‖ − ‖W‖+ 2θ ≤ 2Kα (63)

is satisfied if and only if one of the following conditions holds:

(i) β+ + β− ≤ 0 and θ ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θ ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θ ≤ 2K−1.

Proof. Let α ∈ [1/2, 1]. Since W ∈ Sn, we have, ‖W‖ = max{β+,−β−}, and

‖W − 2K(1− α)In‖ = max
{
β+ − 2K(1− α),−β− + 2K(1− α)

}
. (64)

Three different cases arise that we review below.

(i) If β+ + β− ≤ 0 then ‖W‖ = −β− and

β+ − 2K(1− α) ≤ −β− + 2K(1− α). (65)

From (64) and (65), we deduce that ‖W − 2K(1 − α)In‖ = −β− + 2K(1 −
α). Replacing ‖W‖ and ‖W − 2K(1 − α)In‖ by their value in (63) leads to
Proposition 5(i).

(ii) If 0 ≤ β+ + β− ≤ 2K+1(1 − α) then ‖W‖ = β+ and (65) is satisfied. Hence,
‖W − 2K(1−α)In‖ = −β−+ 2K(1−α). Replacing ‖W‖ and ‖W − 2K(1−α)In‖
by their value in (63) leads to Proposition 5(ii).

16

(iii) If 2K+1(1− α) ≤ β+ + β− then ‖W‖ = β+ and

β+ − 2K(1− α) ≥ −β− + 2K(1− α). (66)

From (64) and (66), we deduce that ‖W − 2K(1 − α)In‖ = β+ − 2K(1 −
α). Replacing ‖W‖ and ‖W − 2K(1 − α)In‖ by their value in (63) leads to
Proposition 5(iii), which completes the proof.

�

5.3. Averaged operator

The notion of nonexpansiveness, whose definition is recalled below, plays a central role
in the analysis of the robustness of nonlinear operators. We racall that T : Rn → Rn
is nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(∀x ∈ Rn)(∀y ∈ Rn) ‖T (x)− T (y)‖ ≤ ‖x− y‖. (67)

In the present study we make use of the notion of averaged operator [38], which is
stronger than nonexpansiveness. T is α–averaged with α ∈ [0, 1], if there exists a
nonexpansive operator R : Rn → Rn such that T = (1−α)In +αR, where In denotes
the identity operator of Rn.
The following property provides an upper bound of the effect of an input perturbation,
which depends on the averageness constant α. In particular, the smaller α is, the more
stable the operator is.

Proposition 6 [38, Remark 4.34, Proposition 4.35] Let T : Rn → Rn.

(i) If T is averaged, then it is nonexpansive.

(ii) Let α ∈]0, 1]. T is α–averaged if and only if for every x ∈ Rn and y ∈ Rn,

‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − 1− α
α
‖(In − T)(x)− (In − T)(y)‖2. (68)

5.4. Robustness of iRestNet to an input perturbation

Let us consider problem (59), where we assume additionally that H>H and D>D are
diagonalizable in a same basis denoted P. The latter is satisfied for instance if H and
D are the results of cyclic convolutive operators. Theorem 1 below gives sufficient
conditions under which the proposed network applied to problem (59) is averaged.

Theorem 1 Let α ∈ [1/2, 1], (Wk, bk, Rk)0≤k≤K−1 be defined by (61), and
(θk)−1≤k≤K−1 be defined as in Proposition 4. Let β− and β+ be the smallest and
largest eigenvalues of W = WK−1 ◦ · · · ◦W0, respectively. For every p ∈ {1, . . . , n}
and every k ∈ {0, . . . ,K − 1}, let β

(p)
k = 1 − γk

(
β
(p)
H + λkβ

(p)
D

)
, where β

(p)
H and β

(p)
D

denote the pth eigenvalue of H>H and D>D in P, respectively. Then, β−, β+, and
(∀k ∈ {0, . . . ,K − 1}) θk can be computed as follows:

β− = min
1≤p≤n

K−1∏
k=0

β
(p)
k , β+ = max

1≤p≤n

K−1∏
k=0

β
(p)
k and θk =

k∑
l=0

θl−1 max
1≤ql≤n

∣∣∣β(ql)
k . . . β

(ql)
l

∣∣∣ .
(69)

In addition, if one of the following conditions is satisfied

17

(i) β+ + β− ≤ 0 and θK−1 ≤ 2K−1(2α− 1);

(ii) 0 ≤ β+ + β− ≤ 2K+1(1− α) and 2θK−1 ≤ β+ + β− + 2K(2α− 1);

(iii) 2K+1(1− α) ≤ β+ + β− and θK−1 ≤ 2K−1,

then the operator RK−1 ◦ (WK−1 ·+bK−1) ◦ · · · ◦R0 ◦ (W0 ·+b0) is α–averaged.

Proof. If H>H and D>D are diagonalizable in the same basis then W ∈ Sn, which,
combined with Proposition 4, leads to (69). If one of the conditions (i)–(iii) is satisfied,
then we deduce from Proposition 5 that W satisfies [59, Proposition 3.6(iii)]. and
[59, Condition 3.1]. In addition, for every k ∈ {0, . . . ,K − 1}, Rk(· + bk) is firmly
nonexpansive [38, Proposition 12.28]. Finally, [59, Theorem 3.8] completes the proof.

�

The conditions provided by Theorem 1 can be easily checked using (69). Theorem 1
provides a framework under which iRestNet is robust to a perturbation of its input:
the upper bound of the output perturbation can then be derived from Proposition 6.

6. Numerical experiments

In this section, we present numerical experiments on a set of problems of image
restoration, demonstrating that in many cases the proposed approach yields a better
reconstruction quality than standard variational and machine learning methods.

6.1. Problem formulation

We consider the non-blind color image deblurring problem, whose degradation model
reads

y = Hx+ ω, (70)

where n is the number of pixels, y = (y(j))1≤j≤3 ∈ R3n is the blurred RGB image,
x = (x(j))1≤j≤3 ∈ R3n is the ground-truth, H ∈ R3n×3n is a linear operator that
models the circular convolution of a known blur kernel with each channel of the color
image, and ω ∈ R3n is a realization of an additive white Gaussian noise with standard
deviation σ. An estimate of x can be derived from the following penalized formulation,
which includes a smoothed total variation regularization,

minimize
x∈C

1

2
‖Hx− y‖2 + λ

3n∑
i=1

√
(Dvx)

2
i + (Dhx)

2
i

δ2
+ 1, (71)

where the feasible set C is the hypercube [xmin, xmax]3n , xmin and xmax are a lower and
an upper bound on the pixel intensity, respectively, Dv ∈ R3n×3n and Dh ∈ R3n×3n

are the vertical and horizontal gradient operators, respectively, δ > 0 is a smoothing
parameter and λ > 0 is the regularization parameter. Here, xmin = 0, xmax = 1
and we set δ = 0.01 in all experiments, which appears as an appropriate order of
magnitude. To find this value for δ, we solved Problem 2 for a small set of images of
the database and used the simplex method to find the best values for δ and λ in terms
of image quality. It is worth noting that the value for δ has not been fine-tuned, but
that the proposed architecture could also be easily modified to include the inference
of δ. The update A, defined in (56), is derived from (71), and is unfolded over K

18

iterations, as it is described in Section 4. The bound constraints in problem (71) fall
under the framework studied in Section 3.2, which provides us with the expression for
the proximity operator of the barrier and its gradient.

6.2. Network characteristics

The tuning of the number of unfolded iterations K must achieve a compromise between
training time, memory requirement, and performance. In order to determine a suitable
setting for K, we trained individually several layers of iRestNet and increased the
number of layers until the performance of the network did not improve significantly.
Using this procedure, the depth of iRestNet is taken equal to K = 40. Regarding the

hidden structures (L(λ)
k)0≤k≤K−1, which estimate the regularization parameter, they

are chosen in view of the regularization function used in problem (71) and have the
following expression,

(∀k ∈ {0, . . . ,K − 1}) λk = L(λ)
k (xk) =

Softplus (bk) σ̂(y)

η(xk) + Softplus (ck)
, (72)

where (bk, ck) is a pair of scalars learned by the network, η(xk) is the standard
deviation of the concatenated spatial gradients of xk, [(Dvxk)>(Dhxk)>], and σ̂(y) is
an approximation of the noise level in the blurred image. The noise level is estimated
as in [61, Section 11.3.1]

σ̂(y) = median(|WHy|)/0.6745, (73)

where |WHy| is the vector gathering the absolute value of the diagonal coefficients of
the first level Haar wavelet decomposition of y. It is worth noticing that the proposed
architecture does not require any prior knowledge about the noise level, in particular
the noise standard deviation does not have to be the same for all input images.
The architecture of the post-processing layer Lpp is inspired from [62]: it is made
of 9 convolutional layers with filters of size 3 × 3. The dilation factor changes from
one layer to another, so as to widen the receptive field without creating memory
issues. There is little correlation between the artifacts that remain in the image after
going through the 40 blocks of iRestNet and the ground-truth image. Hence, it is
easier for the network to learn the residual mapping instead of the image itself since
pushing the residual to zero is easier than fitting an identity mapping by a stack of
layers [8, 62, 63]. Therefore, we add a skip connection between the input of Lpp and
its output. Finally, a ReLU activation function is used after each convolution, the
final activation function is chosen as the Sigmoid function, and residual learning is
combined with batch normalization, a technique which is widely used in deep learning
to fasten and stabilize the training process [62]. The final architecture of Lpp can be
found in Figure 4.

6.3. Dataset and experimental settings

The training set is made of 1200 RGB images: 200 images stem from the Berkeley
segmentation (BSD500) training set, while the remaining 1000 images are taken from
the COCO training set. We use the BSD500 validation set, which is made of 100
images, to monitor the training and check if there is overfitting. The performance
of the proposed method is evaluated on two different test sets: the BSD500 test set,

19

64 64 64 3

7
7

5
5

33

ReLU
+BN

ReLU
+BN

ReLU
+BN

Output

Input

+
9

9

64

11
11

ReLU
+BN

ReLU
+BN

25
6

3

9
93

256

ReLU

64 64 64

3 5
5 7

7

64

ReLU
+BN

ReLU
+BN

Residual
Sigmoid

Figure 4. Architecture of Lpp. BN: batch normalization.

which is made of 200 RGB images, and the Flickr30 test set used in [9], which is made
of 30 RGB images. The test images have been center-cropped using a window of size
256 × 256. Blurry images are produced using the following 25 × 25 blur kernels and
noise levels:

- A Gaussian kernel, which models atmospheric turbulence, with a standard
deviation of 1.6 pixels, and a Gaussian noise standard deviation of σ = 0.008.
This configuration is denoted as GaussianA. To evaluate the robustness of the
proposed method with respect to the noise level, the same kernel is used with a
Gaussian noise whose standard deviation is uniformly distributed between 0.01
and 0.05. The latter is denoted as GaussianB.

- The Gaussian kernel with a standard deviation of 3 pixels, and a Gaussian noise
standard deviation of σ = 0.04, denoted as GaussianC.

- The eighth and third motion test kernels from [64], which are a real-world camera
shake kernels, with a Gaussian noise standard deviation of σ = 0.01. These
settings are denoted as MotionA and MotionB, respectively.

- The square uniform kernel of size 7×7, with a Gaussian noise standard deviation
of σ = 0.01. This configuration is referred to as Square.

6.4. Training

For each degradation model, one iRestNet network is trained. We use a greedy
approach for training the first 30 layers. For L0, a minibatch of 10 images is selected
at every iteration, randomly cropped using a window of size 256 × 256, blurred with
the given kernel, and degraded with Gaussian noise; the training of L0 stops after a
fixed number of epochs. Then, for each image of the training set, a random crop of
size 256 × 256 is selected, blurred, corrupted with noise and passed through L0, the
output is saved and used as an input to train L1. When the training of L1 is complete,
its output is used to train the next layer, etc... This training strategy is chosen with
regards to its low memory requirement: the number of layers is not limited by the
hardware. The rest of the network, Lpp ◦ L39 ◦ . . . ◦ L30, is trained as one block and
the learning rate is multiplied by 0.9 every 50 epochs. To accelerate the training, for
every k ∈ {1, . . . ,K−1}, the weights of Lk are initialized with those of Lk−1. Detailed
information about learning rates and number of epochs can be found in Table 1 below.

20

GaussianA GaussianB GaussianC MotionA MotionB Square

Rates (0.01,0.001) (0.01,0.001) (0.001,0.001) (0.01,0.002) (0.01,0.001) (0.01,0.005)
Epochs (40,393) (40,340) (40,300) (40,1200) (40,1250) (40,740)

Table 1. Training information. First row: initial learning rates, second row:
number of epochs. For every couple, the first and second numbers correspond to
the training of (Lk)0≤k≤29 and Lpp ◦ L39 ◦ . . . ◦ L30, respectively.

The validation set is used to monitor this last step of the training. In particular,
the parameter configuration that gives the best performance on the validation set
during the training is the one saved and used for the tests. Note that for the first
30 layers, after each layer the quality of the restored training images should improve.
This property comes from the training strategy, it is not encoded in the network: if
memory was not an issue, then iRestNet could be trained in an end-to-end fashion.
We use the Adam optimizer [65] to minimize the training loss, which is taken as the
negative of the structural similarity measure (SSIM) [66] defined below

SSIM(x, x) =
(2µxµx + c1)(2σxσx + c2)(2covxx + c3)

(µ2
x + µ2

x + c1)(σ2
x + σ2

x + c2)(σxσx + c3)
, (74)

where x is the ground truth, x is the restored image, (µx, σx) and (µx, σx) are mean
and standard deviation of x and x, respectively, covxx is the cross–covariance of x and
x, and c1, c2 and c3 are constants. As the SSIM captures features that are related
to the human eye perception, it is more discriminative with regards to artifacts than
the mean square error for instance. The gradient of the SSIM loss with respect to
the trainable parameters of the network is computed using the code provided by the
authors of [66], the chain rule, automatic differentiation [58], and the expression given
in Section 3.2 for the derivatives of the barrier proximity operator.
Codes are implemented in Pytorch. Some hidden layers make use of functions that
are not differentiable everywhere, like ReLU or the absolute value for instance. Since
this nondifferentiability happens only at specific points for which the left and right
derivatives are well–defined, Pytorch can handle it as explained in [67]. All trainings
are conducted using a GeForce GTX 1080 GPU or a Tesla V100 GPU. The training,
which can be performed off-line, takes approximately 3 to 4 days for each blur kernel,
while the execution time is only about 1.4 sec per image on a GeForce GTX 1080
GPU.

6.5. Evaluation metrics and competitors

The restoration is evaluated in terms of the SSIM metric. The reconstruction given by
the proposed approach is compared with a solution to problem (71) obtained using the
projected gradient algorithm [39]. For every blurred image, the pair (λ, δ) which leads
to the best SSIM is selected using the simplex method. The solution given by this
variational approach is referred to as VAR. The latter is an unrealistic scenario since it
assumes that there is a perfect estimator of the error, but it gives an upper bound on
the image quality that one can expect by solving (71). We also use the following deep
learning image restoration methods for comparison: EPLL [68], MLP [10], and IRCNN
[62]. Finally, we include comparisons with two unfolded-based methods, namely FCNN
[69], where the authors unfold a half-quadratic splitting algorithm and use a network to

21

learn an effective regularization function, and the method from [70], which is referred
to as PDHG, where the authors perform a maximum of 30 iterations of a primal dual
hybrid gradient algorithm and the proximity operator of the second regularization
function is replaced by a neural network.
For FCNN, we use the code that is available online, in which the authors provide a
model that has only been trained for motion blurs. For completeness, we also test this
model on the Gaussian and uniform kernels of our test configurations. Similarly, for
MLP and PDHG, the authors do not provide models that were trained specifically for
MotionB and Square, so, in order to test these methods on MotionB we use the same
models as for MotionA, and for Square we use models that were trained for a larger
uniform blur.
Since MLP, EPLL and IRCNN require the knowledge of the noise level, for the
GaussianB degradation model, we make use of the estimation of the noise standard
deviation given by the method in [57]. In addition, since some comparison methods,
like EPLL for instance, do not estimate well the borders of the images, the SSIM index
is computed excluding a 6-pixel-wide frame for all images and all tested methods.

6.6. Results and discussion

The average SSIM obtained with the different methods for the various blur kernels and
noise levels on the BSD500 test set can be found in Table 2. The mean SSIM achieved
with iRestNet on this test set is greater than those obtained with the other methods
for all degradation models except MotionA. For this kernel, the average SSIM achieved
with iRestNet is the second highest value after IRCNN, which appears as the most
competitive method. IRCNN involves two steps: first, a Wiener filter is applied to
the blurred image, then, a neural network is used to predict the residual and denoise
the image. These two steps are repeated 30 times, for 30 different manually tuned
regularization parameters. In contrast, iRestNet does not require any tuning from the
user regarding the regularization parameters during training. For completeness, the
SSIM of all images of the BSD500 test set are plotted in Figure 5 for the 6 different
degradation models. As one can see, iRestNet performs well in terms of SSIM on most
of the images.

GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.676 0.526 0.326 0.383 0.549 0.544
VAR 0.804 0.723 0.587 0.819 0.829 0.756
EPLL [68] 0.800 0.708 0.565 0.816 0.839 0.755
MLP [10] 0.821 0.734 0.608 0.854 0.832 0.701
PDHG [70] 0.796 0.716 0.563 0.801 0.805 0.656
IRCNN [62] 0.841 0.768 0.619 0.902 0.907 0.834
FCNN [69] 0.782 0.711 0.569 0.794 0.847 0.752
iRestNet 0.853 0.787 0.641 0.898 0.910 0.840

Table 2. SSIM results on the BSD500 test set.

Since no image was taken from Flickr for training iRestNet, the results on the Flickr30
test set show how well the performance of the trained networks are transferable on
test sets with statistics that are different from those of the training set. Table 3

22

(a) (b)

(c) (d)

(e) (f)

Figure 5. Sorted improvement of iRestNet with regards to other methods on
the BSD500 test set using the SSIM metric: a negative value indicates a better
performance of iRestNet. (a): GaussianA, (b): GaussianB, (c): GaussianC, (d):
MotionA, (e): MotionB, (f): Square.

23

Ground-truth Blurred: 0.509 VAR: 0.833 EPLL: 0.839 MLP: 0.860

PDHG: 0.772 IRCNN: 0.840 FCNN: 0.838 iRestNet: 0.883

Figure 6. Visual results and SSIM obtained with the different methods on one
image from the BSD500 test set degraded with GaussianB.

contains the average SSIM obtained with the different methods on the Flickr30 test
set. Similarly to the BSD500 test set, iRestNet compares favorably with the other
approaches on the Flickr30 test set.

GaussianA GaussianB GaussianC MotionA MotionB Square

Blurred 0.723 0.545 0.355 0.376 0.590 0.579
VAR 0.857 0.776 0.639 0.856 0.869 0.818
EPLL [68] 0.860 0.770 0.616 0.857 0.887 0.827
MLP [10] 0.874 0.798 0.668 0.891 0.873 0.787
PDHG [70] 0.853 0.781 0.623 0.855 0.854 0.721
IRCNN [62] 0.885 0.819 0.676 0.927 0.930 0.886
FCNN [69] 0.846 0.766 0.614 0.801 0.890 0.822
iRestNet 0.892 0.833 0.696 0.919 0.930 0.886

Table 3. SSIM results on the Flickr30 test set.

Examples of visual results obtained with the different methods can be found
in Figures 6 and 7 for two images from the BSD500 test set and the blur kernels
GaussianB and Square, respectively. We also provide the results obtained for one
image from the Flickr30 test set that has been degraded with MotionB. As one can see
from inspecting these pictures, details from the snake’s and caterpillar’s skin patterns
are better retrieved with iRestNet, which provides more visually-satisfactory results
than competitors. Similarly, on Figure 8, competitors tend to smooth too much the
details on the leaves as it can be seen in the top left-hand corner. Regarding Figure 6,
which belongs to the test set with a level-varying noise, it is worth noting that, on the
result obtained with the proposed method, the green background is free from artifacts,
which is not the case for PDHG and IRCNN. This suggests that those two competitors
are not robust to a small change in the noise level.

Figure 9 shows the barrier parameter, stepsize and regularization weight sequences
obtained by passing the image from Figure 6 through the 40 layers of iRestNet. The
oscillations in these plots are most likely due to the fact that the first 30 layers are

24

Ground-truth Blurred: 0.344 VAR: 0.622 EPLL: 0.553 MLP: 0.463

PDHG: 0.617 IRCNN: 0.685 FCNN: 0.549 iRestNet: 0.713

Figure 7. Visual results and SSIM obtained with the different methods on one
image from the BSD500 test set degraded with Square.

Ground-truth Blurred: 0.576 VAR: 0.844 EPLL: 0.849 MLP: 0.835

PDHG: 0.822 IRCNN: 0.906 FCNN: 0.856 iRestNet: 0.909

Figure 8. Visual results and SSIM obtained with the different methods on one
image from the Flickr30 test set degraded with MotionB.

trained individually, while the increasing values for the stepsize in the last 10 layers
are probably a consequence of the effect of the post-processing layer during the second
part of the training. It is worth noting that the largest value for the barrier parameter
is reached at the first layer, which was expected since, in interior point methods, the
barrier parameter vanishes along the iterations.

7. Conclusion

From a variational formulation of an inverse problem, we have derived in this
paper a novel neural network architecture by unfolding a proximal interior point
algorithm. It can be noted that the proposed approach can be extended to a set
of regularization functions, or to penalizations which are parametrized by several
variables. Useful constraints on the sought solution can be enforced thanks to a
logarithmic barrier, so providing more control over the output of the network. We have

25

Figure 9. Left to right: estimated parameters (γk)0≤k≤K−1, (µk)0≤k≤K−1 and
(λk)0≤k≤K−1 for the image from Figure 6 passed through the network layers.

shown for three standard types of constraints that the involved proximity operator
can easily be computed, and that its derivatives are well-defined and computable. In
the case of a quadratic cost function, the theoretical result of Section 5 regarding
the robustness of the network with respect to an input perturbation, ensures the
reliability of the proposed method, which is crucial for many applications. It would
be interesting to extend the scope of this study to a wider class of problems, and to
illustrate this stability result by numerical experiments on different applications like
classification. As demonstrated by our experiments in image restoration, iRestNet
performs favorably compared to state-of-the-art variational and machine learning
methods. An advantage of the proposed approach is that, in contrast with its evaluated
competitors, it does not require any knowledge about the noise level and it does
not involve any hand-selection of the regularization parameters. One limitation of
iRestNet is that the network needs to be trained for a given blur kernel. A direction
for future works is to extend the method to situations in which the observation model
is not fully known, so as to address blind or semi-blind deconvolution problems.

References

[1] R L Lagendijk and J Biemond. The Handbook of Image and Video Processing. Academic Press,
New-York, N. J., USA, 2005.

[2] L Xu and J Jia. Two-phase kernel estimation for robust motion deblurring. In Proceedings of
the 11th European Conference on Computer Vision (ECCV), pages 157–170. Springer, 5-11
September 2010.

[3] J-F Aujol. Some first-order algorithms for total variation based image restoration. Journal of
Mathematical Imaging and Vision, 34(3):307–327, July 2009.

[4] N Pustelnik, A Benazza-Benhayia, Y Zheng, and J-C Pesquet. Wavelet-based image
deconvolution and reconstruction. John Wiley & Son, February 2016.

[5] O Scherzer. The use of Morozov’s discrepancy principle for Tikhonov regularization for solving
nonlinear ill-posed problems. Computing, 51(1):45–60, 1993.

[6] C-A Deledalle, S Vaiter, J Fadili, and G Peyré. Stein Unbiased GrAdient estimator of the Risk
(SUGAR) for multiple parameter selection. SIAM Journal on Imaging Sciences, 7(4):2448–
2487, 2014.

[7] Y Yao, L Rosasco, and A Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

[8] K Zhang, W Zuo, Y Chen, D Meng, and L Zhang. Beyond a Gaussian denoiser: Residual learning
of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155,
2017.

[9] L Xu, J S J Ren, C Liu, and J Jia. Deep convolutional neural network for image deconvolution.
In Proceedings of the International Conference on Advances in Neural Information Processing
Systems (NIPS), pages 1790–1798, 2014.

[10] C Schuler, H C Burger, S Harmeling, and B Schölkopf. A machine learning approach for non-

26

blind image deconvolution. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1067–1074. IEEE, 2013.

[11] C J Schuler, M Hirsch, S Harmeling, and B Scholkopf. Learning to deblur. IEEE transactions
on Pattern Analysis and Machine Intelligence, 38(7):1439, 2016.

[12] C Ledig, L Theis, F Huszár, J Caballero, A Cunningham, A Acosta, A Aitken, A Tejani, J Totz,
Z Wang, et al. Photo-realistic single image super-resolution using a generative adversarial
network. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 105–114, 2017.

[13] K H Jin, M T McCann, E Froustey, and M Unser. Deep convolutional neural network for inverse
problems in imaging. IEEE Transactions on Image Processing, 26(9):4509–4522, 2017.

[14] M T McCann, K H Jin, and M Unser. Convolutional neural networks for inverse problems in
imaging: A review. IEEE Signal Processing Magazine, 34(6):85–95, 2017.

[15] C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, and R Fergus. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[16] D Boublil, M Elad, J Shtok, and M Zibulevsky. Spatially-adaptive reconstruction in computed
tomography using neural networks. IEEE transactions on medical imaging, 34(7):1474–1485,
2015.

[17] J R Hershey, J Le Roux, and F Weninger. Deep unfolding: model-based inspiration of novel
deep architectures. arXiv preprint arXiv:1409.2574, 2014.

[18] J-T Chien and C-H Lee. Deep unfolding for topic models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(2):318–331, 2018.

[19] S Wang, S Fidler, and R Urtasun. Proximal deep structured models. In Advances in Neural
Information Processing Systems, pages 865–873, 2016.

[20] M Mardani, H Monajemi, V Papyan, S Vasanawala, D Donoho, and J Pauly. Recurrent
generative adversarial networks for proximal learning and automated compressive image
recovery. arXiv preprint arXiv:1711.10046, 2017.

[21] S Diamond, V Sitzmann, F Heide, and G Wetzstein. Unrolled optimization with deep priors.
arXiv preprint arXiv:1705.08041, 2017.

[22] K Gregor and Y LeCun. Learning fast approximations of sparse coding. In Proceedings of the
27th International Conference on International Conference on Machine Learning (ICML),
pages 399–406, Haifa, Israel, 21-24 June 2010. Omnipress.

[23] U S Kamilov and H Mansour. Learning optimal nonlinearities for iterative thresholding
algorithms. IEEE Signal Processing Letters, 23(5):747–751, 2016.

[24] J. Zhang and B. Ghanem. ISTA-Net: Interpretable optimization–inspired deep network
for image compressive sensing. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1828–1837, Jun 2018.

[25] J Sun, H Li, Z Xu, and Y Yang. Deep ADMM-Net for compressive sensing MRI. In Advances
in Neural Information Processing Systems, pages 10–18, 2016.

[26] U Schmidt and S Roth. Shrinkage fields for effective image restoration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2774–2781,
Columbus, USA, 24-27 June 2014.

[27] J Sun and Z Xu. Color image denoising via discriminatively learned iterative shrinkage. IEEE
Transactions on Image Processing, 24(11):4148–4159, 2015.

[28] Y Chen and T Pock. Trainable nonlinear reaction diffusion: A flexible framework for fast and
effective image restoration. IEEE transactions on pattern analysis and machine intelligence,
39(6):1256–1272, 2017.

[29] M Andrychowicz, M Denil, S Gomez, M W Hoffman, D Pfau, T Schaul, B Shillingford, and
N De Freitas. Learning to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, pages 3981–3989, 2016.

[30] K Li and J Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.
[31] B Amos and J Z Kolter. OptNet: Differentiable optimization as a layer in neural networks.

In Proceedings of the 34th International Conference on Machine Learning (ICML), pages
136–145, 6-11 August 2017.

[32] T B Trafalis, T A Tutunji, and N P Couëllan. Interior point methods for supervised training
of artificial neural networks with bounded weights. In P M Pardalos, D W Hearn, and W W
Hager, editors, Network Optimization, pages 441–470, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[33] P T Krasopoulos and N G Maratos. An Interior Point Recurrent Neural Network for Convex
Optimization Problems, pages 409–427. Springer New York, New York, NY, 2014.

[34] S. Harizanov, J.-C. Pesquet, and G. Steidl. Epigraphical projection for solving least squares
Anscombe transformed constrained optimization problems. In Proceedings of the 4th

27

International Conference on Scale Space and Variational Methods in Computer Vision
(SSVM), pages 125–136, Schloss Seggau, Graz, Austria, Jun 2013. Springer.

[35] O. Musse, F. Heitz, and J.-P. Armspach. Topology preserving deformable image matching
using constrained hierarchical parametric models. IEEE Transactions on Image Processing,
10(7):1081–1093, 2001.

[36] M. Klodt and D. Cremers. A convex framework for image segmentation with moment
constraints. In Proceeding of the 13th International Conference on Computer Vision (ICCV),
pages 2236–2243. IEEE, Dec 2011.

[37] S Durand and M Nikolova. Stability of minimizers of regularized least squares objective functions
I: study of the local behaviour. Applied Mathematics and Optimization (Springer-Verlag New
York), 53:185–208, 2006.

[38] H H Bauschke and P L Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, 2017.

[39] A N Iusem. On the convergence properties of the projected gradient method for convex
optimization. Computational Applied Mathematics, 22(1):37–52, 2003.

[40] S Bonettini and M Prato. New convergence results for the scaled gradient projection method.
Inverse Problems, 31(9):1–20, 2015.

[41] S Boyd, N Parikh, E Chu, B Peleato, and J Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–222, 2011.

[42] N Komodakis and J-C Pesquet. Playing with duality: An overview of recent primal-dual
approaches for solving large-scale optimization problems. IEEE Signal Processing Magazine,
32(6):31–54, Nov. 2014.

[43] S Bonettini and T Serafini. Non-negatively constrained image deblurring with an inexact interior
point method. Journal of Computational and Applied Mathematics, 231(1):236 – 248, 2009.

[44] P L Combettes and V R Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling and Simulation, 4(4):1168–1200, Nov 2005.

[45] P L Combettes and J-C Pesquet. Proximal splitting methods in signal processing. In H H
Bauschke, R Burachik, P L Combettes, V Elser, D R Luke, and H Wolkowicz, editors,
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212.
Springer-Verlag, New York, 2010.

[46] E. Chouzenoux, M.-C. Corbineau, and J.-C. Pesquet. A proximal interior point algorithm with
applications to image processing. HAL preprint hal-02120005, 2019.

[47] M-C Corbineau, E Chouzenoux, and J-C Pesquet. PIPA: a new proximal interior point algorithm
for large-scale convex optimization. In Proceedings of the 43rd IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, Canada, 15-20 April
2018.

[48] M-C Corbineau, E Chouzenoux, and J-C Pesquet. Geometry-texture decomposi-
tion/reconstruction using a proximal interior point algorithm. In Proceedings of the 10th
IEEE Sensor Array and Multichannel Signal processing Workshop (SAM 2018), 8-11 July
2018.

[49] M H Wright. Interior methods for constrained optimization. Acta numerica, 1:341–407, 1992.
[50] A Kaplan and R Tichatschke. Proximal methods in view of interior-point strategies. Journal

of Optimization Theory and Applications, 98(2):399–429, 1998.
[51] M.-O. Czarnecki, N. Noun, and J. Peypouquet. Splitting forward-backward penalty scheme for

constrained variational problems. Journal of Convex Analysis, 23(2):531–565, 2016.
[52] C Chaux, P L Combettes, J-C Pesquet, and V R Wajs. A variational formulation for frame-based

inverse problems. Inverse Problems, 23(4):1495–1518, June 2007.
[53] A L Dontchev and R T Rockafellar. Implicit functions and solution mappings. Springer Monogr.

Math., 2009.
[54] M S Bartlett. An inverse matrix adjustment arising in discriminant analysis. The Annals of

Mathematical Statistics, 22(1):107–111, 1951.
[55] C Dugas, Y Bengio, F Bélisle, C Nadeau, and R Garcia. Incorporating second-order functional

knowledge for better option pricing. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 472–478, 2001.

[56] C R Vogel. Computational methods for inverse problems, volume 23. SIAM, 2002.
[57] A Ramadhan, F Mahmood, and A Elci. Image denoising by median filter in wavelet domain.

arXiv preprint arXiv:1703.06499, 2017.
[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De Vito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop:
The Future of Gradient-based Machine Learning Software and Techniques, Long Beach, CA,

28

USA, Dec 2017.
[59] P L Combettes and J-C Pesquet. Deep neural network structures solving variational inequalities.

arXiv preprint arXiv:1808.07526, 2018.
[60] J Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,

2015.
[61] S. Mallat. A wavelet tour of signal processing. Elsevier, 1999.
[62] K Zhang, W Zuo, S Gu, and L Zhang. Learning deep CNN denoiser prior for image restoration.

In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, 2017.

[63] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[64] A Levin, Y Weiss, F Durand, and W T Freeman. Understanding and evaluating blind
deconvolution algorithms. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1964–1971, Miami, USA, 20-25 June 2009.

[65] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[66] Z Wang, A C Bovik, H R Sheikh, and E P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

[67] I Goodfellow, Y Bengio, and A Courville. Deep Learning. MIT Press, 2016.
[68] D Zoran and Y Weiss. From learning models of natural image patches to whole image restoration.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pages
479–486. IEEE, 2011.

[69] J. Zhang, J. Pan, W.-S. Lai, R. W. H. Lau, and M.-H. Yang. Learning fully convolutional
networks for iterative non-blind deconvolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3817–3825, 2017.

[70] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers. Learning proximal operators: Using
denoising networks for regularizing inverse imaging problems. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 1781–1790, Venice, Italy, Oct
2017.

	1 Introduction
	2 Proximal interior point algorithm
	2.1 Variational formulation and notation
	2.2 Interior point approaches
	2.3 Proposed iterative schemes
	2.4 Limitations

	3 Proximity operator of the barrier
	3.1 Affine constraints
	3.2 Hyperslab constraints
	3.3 Bounded 2-norm

	4 iRestNet architecture
	4.1 Overview
	4.2 Hidden structures
	4.3 Differential calculus

	5 Network stability
	5.1 Relation to generic deep neural networks
	5.2 Preliminary results
	5.3 Averaged operator
	5.4 Robustness of iRestNet to an input blackperturbation

	6 Numerical experiments
	6.1 Problem formulation
	6.2 Network characteristics
	6.3 Dataset and experimental settings
	6.4 Training
	6.5 Evaluation metrics and competitors
	6.6 Results and discussion

	7 Conclusion

